
Sebastian Graf | DENOG12 | 10.11.2020

BUILDING A TRANSPARENT

LAYER 1 SWITCH USING P4

A lightning talk about an internal research „project“

 2 | © by Xantaro 2 | © by Xantaro

DISCLAIMER

This talk is not an introduction to the P4 language. You will not see any P4 code. Consider the following
resources for that:

• Powerful Properties of Packet Processing with P4 - Aaron A. Glenn – DENOG10

• https://github.com/denog/media/tree/master/DENOG10

• https://media.ccc.de/c/denog10

• p4.org

• github.com/p4lang/

 3 | © by Xantaro

PROBLEM STATEMENT

▪ We operate a multi-vendor lab network

▪ Automation for Network Lab Environments – Tobias Heister – DENOG9

► https://github.com/denog/media/tree/master/DENOG9

▪ A lot of pre-cabled standard topologies for different scenarios, but every now and then somebody comes up
with a cabling requests were we run into issues

▪ Out-of-ports error

▪ Out-of-transceiver error

▪ Out-of-time error

▪ Out-of-budget error

▪ Obviously, we also need somebody on site to actually do the change

https://github.com/denog/media/tree/master/DENOG9

 4 | © by Xantaro

EASY SOLUTION

▪ So what do you do, when you have not enough ports on your expensive devices?

▪ Put a switch between them

▪ In our case we grabbed some Juniper QFX Switches originally put into the Lab for a Qfabric deployment

▪ Started as Virtual Chassis with QFX3500 and QFX3600

▪ Added EX4300 later on for 1G support

▪ Added two variants of QFX5100 later on for additional 10G and 40G Ports

▪ Allows user-definable connections between lab devices by configuring a vlan

▪ And yes, we actually successfully performed multiple ISSUs on our Frankenfabric!

▪ But there are issues with that

▪ Quite ok for Layer 3 and above, but not really transparent for Layer 2

▪ You always find an ugly protocol, that gets eaten by the switch

▪ It is a switch, so it behaves like one (mac learning, intercepts frames to control plane that it considers interesting)

 5 | © by Xantaro

LET‘S GO SHOPPING

▪ There are ready-to-use solutions for Layer 1 switching on the market

▪ Typically employ one of the following principles

▪ Patch robots

► Takes quite some rackspace

► Need to decide on physical media (singlemode or multimode, LC / MTP)

► As transparent as a cable can be

▪ Optical-Electrical-Optical

► Can transform between media types

► Operate on bit layer and hence provide transparency

▪ After getting quotes to have an interconnect matrix for some 100G Ports, we looked for alternatives

▪ We had two P4-capable WEDGE 100BF-32X switches in the lab, originally purchased for whitebox testing

 6 | © by Xantaro

P4 IN ONE SLIDE

▪ Compared to a “classical” network device, a P4 enabled one gives you a lot of opportunities but also work

▪ In the classical world, somebody else tells you how to instruct the device to do stuff

Chipset

SDK

NOS

CLI / API

Chipset
Vendor

Device
Vendor

Operator

Chipset

SDK

NOS

CLI / API

Chipset
Vendor

Operator

defined by operator

defined by

device vendor

defined by

chipset vendor

 7 | © by Xantaro

HIGH LEVEL STEPS TO GET P4 RUNNING ON THE WEDGE 100BF-32X

▪ When you power-up a Wedge 100BF-32X it defaults to be a doorstopper with 32 QSFP28 Ports

▪ You need to program it with P4. Writing a P4 program that forwards frames based on incoming port is quite
simple, but in order to get this up and running you need to follow some steps

▪ The switch boots into Open Network Install Environment (ONIE), you need to load a NOS on it

▪ We decided to use Open Network Linux (ONL), so we had to

► Clone ONL repo, apply patch from chipset vendor

► Build the image

► Upload the image to the switch and use ONIE to install it

▪ Copy hardware specific packages to the switch (running ONL) and install them

▪ Compile / install the SDK from the chipset vendor and install it on ONL

▪ Write P4 program and tell the SDK to execute it

▪ Change port speed (10G breakout is default) and enable them

▪ Insert entries into the lookup table to create forwarding entries

 8 | © by Xantaro

CHECK TRANSPARENCY

▪ Once a packet reaches the chipset, it is stored as series of 0s and 1s

▪ You have to write a parser definition for everything that it should process

▪ As the chipset does not care about any headers without a corresponding parser, we suspected that it should be quite
transparent if we do not tell it how to process any protocol headers

▪ First transparency tests (with varying legality of frames) done with packet generator

► LACP went through without an issue, other ugly stuff as well

► Ethernet frames using ff:ff:ff:ff:ff:ff as source MAC were forwarded

► Frames with totally messed up ethernet headers (but correct crc) were forwarded

► Sending frames with incorrect CRC got dropped => never reached the chipset for processing

► Linerate with 99,9995% traffic rate, latency: Average: 768ns, Minimum: 737 ns, Max: 812ns

− Latency roughly equals to 150 meters of singlemode fiber

▪ Second test when a colleague requested a cable between two Juniper MX during a PoC

► Used the P4 program as replacement for a direct connection

► No complaints received

 9 | © by Xantaro

CONCLUSION

▪ We used a quite powerful device for a quite boring task

▪ But it works out nicely and is quite compelling from a price perspective

▪ Now gathering ideas what we could add as features

► Traffic amplification

► Local and remote mirroring

► Statistical packet drops

► ...

▪ P4 would even allow us to define our own dataplane encapsulations if we had to

► Still searching for a reason to do that....

